

Forestry Thematic Exploitation Platform

Service Developer Guide

v2021.12

 Forestry TEP Service Developer Guide v2021.12

Contents
1 Introduction .. 3

1.1 Overview.. 3

1.2 Platform infrastructure .. 3

1.3 Developer interface ... 3

2 Service development ... 6

2.1 Creating a service ... 6

2.2 Service files .. 8

2.3 Input definitions ... 9

2.4 Output definitions .. 11

2.5 Templated service parameters ... 12

2.6 Systematic processing .. 14

2.7 Developer hints .. 14

3 Service sharing ... 16

3.1 Sharing a service to selected users ... 16

3.2 Publishing a service .. 17

4 Examples ... 18

4.1 Simple service with a downloaded binary file and Python scripts ... 18

4.2 A service using Python and GDAL ... 20

4.3 A service using Python and R .. 22

4.4 Python utility library for parameter handling and input file detection 25

 Forestry TEP Service Developer Guide v2021.12

1 Introduction

1.1 Overview

One of the key features of Forestry Thematic Exploitation Platform (F-TEP) is the ability for users to create
new processing services on the platform. The users can shape the services that F-TEP already offers or
develop brand new services. This feature has also a collaborative aspect, as the developer can optionally
share the service with others or make it public to all, giving other users the chance to use novel algorithms
and processors on a satellite data tailored for their needs.

This document aims to give service developers the information required to successfully implement new
services. The reader is assumed to be familiar with the basic functionality of the platform that is described
in the User Manual, available at https://f-tep.com/usermanual.

1.2 Platform infrastructure

For effective service development, it as advantageous to understand how the F-TEP platform manages
jobs launched by users. Instead of an interactive command prompt for writing and executing scripts,
services are internally implemented as Docker images that are instantiated when a user launches a
service. The system builds the Docker image based on the specification made by the service developer in
Dockerfile and in the workflow script and any associated files. The Docker image contains full specification
of a Linux virtual machine, including Linux distribution, installed programs, libraries, scripts, and
environment variables. Service inputs and expected outputs are also specified.

When a user launches a service, i.e. creates a processing job, the Docker image that contains the service
implementation is executed on a worker virtual machine. Each worker machine hosts at most two
concurrent jobs, and the system automatically spawns new worker machines as needed. The
configuration of a worker virtual machine is 8 virtual CPUs, 32 GB of RAM and 128 GB of SSD-type
temporary workspace. Output product storage is not currently limited.

Note that specific configurations are possible. If a processing service requires specific capacity for CPU,
RAM or storage, dedicated resources can be arranged. Please contact the Forestry TEP team for details.

1.3 Developer interface

Users with the Expert user role have access to the service developer interface. If you do not see the
Developer tab on the top row of the F-TEP user interface (Error! Reference source not found.), please
contact support to request access - see the Helpdesk tab for contact details.

The Developer interface is shown in Figure 2 below.

 Forestry TEP Service Developer Guide v2021.12

Figure 1 Expert user view of F-TEP

Figure 2 Service developer interface

The toolbar on the left side of the screen has two buttons:

Create New Service
icon

 Forestry TEP Service Developer Guide v2021.12

Services: toggles on and off the service list pane at the left side of the screen

Messages: toggles on and off message list pane at the bottom of the screen

The service list in Figure 2 shows the services the user has access to. These will be made up of:

1. Core services, provided by F-TEP and made available to all
2. Own services, created by the user
3. Shared services, made visible to the user by other users

The definitions of existing services can be browsed by clicking on the service name on the list. The list can
be filtered by clicking on the Filters row on the top of the list, to open the options shown in Figure 3. The
field Search is a free-text search from service names and descriptions. Other filtering options are service
type and service ownership - either the services owned by the user, services shared with the user, or both.

Figure 3 Service list filtering options

 Forestry TEP Service Developer Guide v2021.12

2 Service development

2.1 Creating a service

Development of a new service is started by clicking the Create New Service icon
in the lower right corner of the service list, which opens the dialog shown in
Figure 4 below.

Figure 4 Add new service dialog

Service name, title and an optional description are specified in the dialog. Service name has to start with
a letter and only contain letters and numbers, no spaces or special characters. Service title and description
are free format text fields. The maximum length of the description is 255 characters. If the length exceeds
the limit, saving the service is not possible. The approval of Terms and Conditions checkbox needs to be
checked as well.

In case nothing appears to happen when clicking the Create button, please check the message list for an
error message (Could not create Service …). A common cause of error (see Figure 5) is that service names
need to be globally unique, i.e. another service may have reserved the name, even if the conflicting service
is not visible to the user.

On successful creation of the service, the skeleton of the new service opens as shown in Figure 6.

Figure 5 Error message when the service name is already in use

Create New Service icon

 Forestry TEP Service Developer Guide v2021.12

Figure 6 New service skeleton

On the top of the pane, there are fields for the service name, title and description, filled with values given
in the creation dialog. The user can also specify a version number for the service and select the service
type:

Processor The default type for all services that do not have an interactive user interface.

Application The type for interactive services with a graphical user interface.

A service is defined with its files, input definitions and output definitions - see the following subsections.

Remember to save changes to the service after modifying any information by clicking
the Save Service icon at the top right corner of the pane.

Save Service
icon

Save Service icon

 Forestry TEP Service Developer Guide v2021.12

2.2 Service files

The FILES tab lists all the files that form the service definition on the F-TEP server (Figure 7).

Figure 7 FILES tab

The skeleton for new services contains two generated files:

Dockerfile The Dockerfile specifies the processing environment of the service, including the
operating system and all installed programs and libraries. The default file provides SNAP
and Orfeo toolbox on top of the Ubuntu 16.04 operating system, giving a solid basis for
creating tailored EO data processing services. Other libraries can be installed as needed.

workflow.sh This is the executable script that is run by default when the service is run, i.e. the service
procedure is defined in this file. The default file demonstrates the expected directories
for input and output data, and how to read the input parameter values. If the service
developer prefers an alternative scripting language, workflow.sh can be updated to call
another script, or the ENTRYPOINT parameter in the Dockerfile may be changed.

New text files can be added to the service via the plus sign below the file list.

In case the service requires binary files, commands to download them should be added in the Dockerfile.
An example is given in Figure 18. Downloading of text files can also be specified in the Dockerfile, if e.g.
an external software repository is used. The files are downloaded at the time of building the Docker image.
Note that the files added to the F-TEP server are currently readable to all developers that have access to
the service, so very sensitive information should not be included in the files.

Remember to save the service after modifying files.

The service has to be built after its files have been modified for the changes to take effect. The container
build status should show ‘Build required’ in this case. The build is initiated with the wrench icon next to
the status field, after which the status is ‘Build requested’. The status field has to be refreshed manually
with the arrow icon next to it. The build log opens in a new browser tab by clicking to notepad icon. The
log tab can be refreshed manually with the web browser’s refresh function to follow the progress. The log
icon is not visible it the service has not been built yet.

Add File icon

 Forestry TEP Service Developer Guide v2021.12

Figure 8 Service build controls

2.3 Input definitions

The service inputs are defined in the INPUT DEFINITIONS tab (Figure 9). New inputs are defined with the
Add button. Remember to save the service after modifying inputs.

Figure 9 INPUT DEFINITIONS tab

The following fields can be defined for each input parameter:

Table 1 Fields for specifying service input parameters

Core
 ID Required field. Tag used for the parameter in parameter file. It should

not contain spaces or special characters.
 Title Required field. Name of the parameter shown to the user.
 Description Description of the parameter, shown in the user interface below the

parameter value.
Data Type
 Field Type LITERAL
 Data Type String/integer/double
 Allowed Values An enumeration of allowed values for the parameter, if applicable
 Field Type COMPLEX
 Mime Type Mime type of the input
 Extension File extension of the input
 As Reference When set to true, the parameter value is interpreted as an input data

URL. On launching the service, attempt is made to retrieve the specified
input data and provide it within the service execution environment.

Advanced
 Default value The default value for the parameter for enumerated values.

Refresh status field Build service View build log

 Forestry TEP Service Developer Guide v2021.12

 Minimum Occurrences Minimum number of values. Set to 0 for optional parameters and to 1
(or above) for required parameters.

 Maximum Occurrences Maximum number of values, set to 1 or above.
 Data Reference If True, enables the drag-and-drop behavior for input data.
 Search Parameter If True, enables to launch the service in systematic processing mode

where a number of jobs is launched for the results from a data query
that is executed periodically. Each job has one input file from the data
query results as this parameter and all other parameters are the same
for all the jobs.
This option is visible only if Data Reference is True.

 Enable Parallel
Processing

If True and the number of inputs is greater than one, the job will be split
to multiple parallel sub-jobs. Each sub-job processes one of the given
parameter values.

Note that specification of the Data Type does not change the way the parameter values are passed to
the service. The parameter file contains key-value pairs and all values are strings. The system attempts
to download all parameter values that are in the URL format, regardless of the data type parameters.

All input parameters are available to the service in the parameter file:

 /home/worker/workDir/FTEP-WPS-INPUT.properties

A sample parameter file with one data reference parameter and one string valued parameter is shown in
Figure 10.

myparam="A string value"
image="sentinel2:///S2B_MSIL1C_20200928T042709_N0209_R133_T49WEN_20200928T053528"

Figure 10 A sample parameter file with one data reference parameter (image) and one string valued parameter (myparam)

The platform makes the data inputs available under this folder:

 /home/worker/workDir/inDir

Each input is placed in a subfolder named with the ID of the parameter. The resulting input folder structure
for the parameter file in Figure 10 is shown in Figure 11 below. (This sort of illustration can be viewed on
the platform in the file dialog of a tool with a graphical user interface, such as SNAP.) Note that the folder
with its name starting with S2B… is a symbolic link and that the input folder is in read-only mode. The
Sentinel-2 input folders are in the .SAFE format, although the folder name does not contain the suffix.

 Forestry TEP Service Developer Guide v2021.12

Figure 11 Input folder structure. Folder S2B_MSIL1C_20200928T042709_N0209_R133_T49WEN_20200928T053528 is a symbolic
link.

Zipped input files are automatically unzipped to a subfolder with the name of the zip file (without .zip
extension). Other compressed data formats are not automatically uncompressed.

If a parameter value is in the URL format, the system attempts to download the data into the input data
folder. The job will fail if the download fails. The file will be downloaded into a subfolder named with the
name of the file without the file type suffix, and if the file is a zip archive, it is unpacked into that folder.

2.4 Output definitions

The service outputs are defined in the OUTPUT DEFINITIONS tab (Figure 12). New outputs are defined
with the Add button. Remember to save the service after modifying outputs.

Figure 12 OUTPUT DEFINITIONS tab

The following fields can be defined for each output:

Core
 ID This is the tag used for the output. It should not contains spaces or

special characters.
 Title This is the name of the output.
 Description This is the description of the output.
Data Type

 Field Type LITERAL Not applicable, the services produce file outputs.
 Field Type COMPLEX
 Mime Type Mime type of the output
 Extension Extension of the output

 Forestry TEP Service Developer Guide v2021.12

 As Reference Not applicable.
Advanced
 Default value Not applicable.
 Minimum Occurrences Minimum number of values. Set to 0 for optional outputs and to 1

(or above) for required outputs.
 Maximum Occurrences Maximum number of outputs, set to 1 or above. It is an error if the

service generates more files for this output.

Note that field type LITERAL or a Default value are not applicable with file outputs. However, the system
does not enforce output type checks.

The service should place all its outputs under this folder:

 /home/worker/workDir/outDir

Each output should be stored in a subfolder named with the ID of the output, e.g. output with ID myoutput
should be placed in this folder:

/home/worker/workDir/outDir/myoutput

2.5 Templated service parameters

Service developers can optionally use an advanced service configuration to access powerful platform
functionality. Via specifying templates, the service developer can define ways for the system to assist the
eventual service user in e.g. automatic selection of the input data.

For a specific guidance on the feature, please see the online documentation:

https://github.com/vttresearch/f-tep/blob/development/docs/templated-service-parameters.md

As a simple usage scenario, the feature can be used to create a service with simplified parameters for
basic users, while also providing an option to see the full parameter list when the user selects Advanced
Mode in the service workspace. For this, follow these steps:

1. The SIMPLE INPUT DEFINITIONS tab is by default generated when the service is saved for the first
time and will at first be empty. Remove the empty definitions with the X icon shown in Figure 13.

2. Click the + sign next to the OUTPUT DEFINITIONS tab to create the SIMPLE INPUT DEFINITIONS
tab. This generates a template to fill all parameters specified in the INPUT DEFINITIONS tab. An
example is shown in Figure 14.

3. Save the service by clicking the Save Service icon at the top right corner of the pane before
continuing! If parameters are removed in the SIMPLE INPUT DEFINITIONS tab before saving the
service, they will be removed from INPUT DEFINITIONS tab as well! (F-TEP version 3.5.7)

4. Remove the desired input parameters from the SIMPLE INPUT DEFINITIONS tab by clicking the
Remove Row icon of the parameters.

5. Fill a default value for the removed parameters in the template, as shown in Figure 15.
6. Click the VALIDATE TEMPLATE button at the bottom of the pane. The service cannot be saved

before the changes are validated.
7. Save the service.

 Forestry TEP Service Developer Guide v2021.12

Figure 13 Simple Input Definitions tab

Figure 14 Simple input definitions example

Remove Simple Input Mode icon

Remove Row icon

 Forestry TEP Service Developer Guide v2021.12

Figure 15 Modified template

2.6 Systematic processing

All F-TEP services can optionally be configured to run in "Systematic" mode, allowing automated,
scheduled detection of input data and generation of processing jobs. To learn about this feature, please
see the online documentation:

https://github.com/vttresearch/f-tep/blob/development/docs/systematic-processing.md

To enable systematic processing for a service at least one input parameter must be specified as search
parameter, see section 2.3 Input definitions.

2.7 Developer hints

This section provides miscellaneous hints for service developers.

DEVELOPER HINT:

While developing a service there might be a need to check the contents of the input folder. An easy way
is to add the following line to workflow.sh, and define an output with ID listing:

ls -R -l -L ${IN_DIR} > ${OUT_DIR}/listing/listing.txt

The log lines in the user interface are not strictly in the correct order, thus using file output is easier.

The contents of the parameter file are shown in the service log, if the default behavior is not changed
(note again that the lines are not in the correct order):

++ image=sentinel2:///S2B_MSIL1C_20200928T042709_N0209_R133_T49WEN_20200928T053528

++ myparam=String

 Forestry TEP Service Developer Guide v2021.12

DEVELOPER HINT:

The development process is faster when done on a local machine, which avoids the need to create Docker
images. A quick solution is to create scripts or programs that take input folder, output folder, and
parameter file path as command line arguments and set the required input and output folder structure
on a local machine. Deploying such scripts and programs on the F-TEP platform is fast and straightforward.

DEVELOPER HINT:

It can be a good idea to print some information about the execution environment in the log, e.g. program
and library versions - as in Figure 19 - as the default versions can be different from the development
environment. If needed, particular versions can be specified in the Dockerfile installation commands.

 Forestry TEP Service Developer Guide v2021.12

3 Service sharing

3.1 Sharing a service to selected users

At any time, the developer can share the service to a defined group of users, such as a set of colleagues
or customers. This allows the permitted users to see and to execute the service. Additionally, permission
can be given to modify the service as well.

Groups are created via the Groups icon in the Manage/Share interface. Please see the User Manual for
details.

Service sharing is done in the Manage/Share tab of the user interface, shown in Figure 16. First, select the
service, with the help of the list filters if needed.

To share a service, click on the Share icon near the right edge of the screen, which opens the dialog shown
in Figure 17. In this dialog, select the group with which to share the service. Also, define the permissions
(read, write, or admin) for the group with regard to this service.

Figure 16 Service sharing interface

Request Publication
icon

Share icon

 Forestry TEP Service Developer Guide v2021.12

Figure 17 Service sharing dialog

3.2 Publishing a service

When a service is ready to be used by a wide audience, the developer can opt to publish it to the benefit
of all users, among the other services on Forestry TEP. As opposed to service sharing, published services
are visible to all users.

To request publication, enter the Manage/Share interface and click on the Request Publican icon in the
left pane of the service list, shown in Figure 16. Publishing is not instantaneous, as new services will be
reviewed by the F-TEP team to verify that they are safe and appropriate. After the review, the new service
will be made visible to all users in the Explorer interface and via the API.

 Forestry TEP Service Developer Guide v2021.12

4 Examples

4.1 Simple service with a downloaded binary file and Python scripts

This service uses a Python script that could call a downloaded binary file during processing. It has one
output definition (result) and it produces a zip file of its processing outputs as the final output. The script
file my_script.py that is called in workflow.sh has to be defined in the FILES tab of the service.

FROM ubuntu:18.04

LABEL maintainer lauri.seitsonen@vtt.fi

Install required programs
RUN apt-get update && apt-get install -y\
 zip\
 curl\
 python3\
 python3-pip\
 python3-dev\
 python3-gdal\
 gdal-bin\
 libgdal-dev

Prepare processor script
RUN mkdir -p /home/worker/processor

Download binary files. Note that curl needs to be installed before this.
RUN curl -L https://www.dropbox.com/s/sq2wwekmdwhz/my_binary?dl=1 > /home/worker/processor/my_binary

Add execute rights to the downloaded binary file
RUN chmod a+x /home/worker/processor/*

Copy all files defined in the FILES tab of the developer interface to the image
COPY * /home/worker/processor/

Configure environment
ENV PATH=/home/worker/processor:${PATH}

The script that is executed when the Docker image is instantiated
ENTRYPOINT ["/home/worker/processor/workflow.sh"]

Figure 18 Dockerfile with binary file download

 Forestry TEP Service Developer Guide v2021.12

#!/usr/bin/env bash

set -x

F-TEP service environment
WORKFLOW=$(dirname $(readlink -f "$0"))
WORKER_DIR="/home/worker"
IN_DIR="${WORKER_DIR}/workDir/inDir"
OUT_DIR="${WORKER_DIR}/workDir/outDir"
WPS_PROPS="${WORKER_DIR}/workDir/FTEP-WPS-INPUT.properties"
PROC_DIR="${WORKER_DIR}/procDir"
TIMESTAMP=$(date --utc +%Y%m%d_%H%M%SZ)

Temporary file storage
mkdir -p ${PROC_DIR}

Set GDAL_DATA variable
export GDAL_DATA=$(gdal-config --datadir)

Input files available under ${IN_DIR}
Output files to be written to ${OUT_DIR}/<parameter>/<outputfilename>
mkdir -p ${OUT_DIR}/result

Print information useful for debugging
cat ${WPS_PROPS}
python3 --version
pip3 list
printenv
gdal_translate --version

Execute the Python script
python3 ${WORKFLOW}/my_script.py ${IN_DIR} ${PROC_DIR} ${WPS_PROPS}
rc=$?; if [[$rc != 0]]; then
 echo "Workflow failed (exit code $rc)"
 exit $rc
fi

Set read access to the generated files in ${PROC_DIR}
chmod -R a+r ${PROC_DIR}/*

Make a zip file of all the files the script created in ${PROC_DIR}
cd ${PROC_DIR}
zip -r -fz ${OUT_DIR}/result/my_result_zip.zip *

Figure 19 workflow.sh for a service that uses Python scripts

 Forestry TEP Service Developer Guide v2021.12

4.2 A service using Python and GDAL

FROM ubuntu:18.04

LABEL maintainer lauri.seitsonen@vtt.fi

Dependencies
RUN apt-get update && apt-get install -y\
 zip\
 curl\
 bc\
 libfreetype6\
 gdal-bin\
 libgdal-dev\
 python3\
 python3-dev\
 python3-pip\
 python3-gdal\
 software-properties-common\
 && apt-get clean && rm -rf /var/lib/apt/lists/*

RUN pip3 install GDAL numpy rasterio fiona pyproj shapely geopandas weightedstats sklearn scipy

RUN mkdir -p /home/worker/processor

Prepare processor script
COPY * /home/worker/processor/

Configure environment
ENV PATH=/home/worker/processor:${PATH}

ENTRYPOINT ["/home/worker/processor/workflow.sh"]

Figure 20 Dockerfile for a service that uses Python and GDAL

 Forestry TEP Service Developer Guide v2021.12

#!/usr/bin/env bash

set -x -e

F-TEP service environment
WORKFLOW=$(dirname $(readlink -f "$0"))
WORKER_DIR="/home/worker"
IN_DIR="${WORKER_DIR}/workDir/inDir"
OUT_DIR="${WORKER_DIR}/workDir/outDir"
WPS_PROPS="${WORKER_DIR}/workDir/FTEP-WPS-INPUT.properties"
PROC_DIR="${WORKER_DIR}/procDir"
TIMESTAMP=$(date --utc +%Y%m%d_%H%M%SZ)

export GDAL_DATA=$(gdal-config --datadir)

Input parameters available as shell variables
source ${WPS_PROPS}

export PYTHONIOENCODING=utf8

Temporary file storage
mkdir -p ${PROC_DIR}
Service output
mkdir -p ${OUT_DIR}/output_shapefile

Input files available under ${IN_DIR}
Output files to be written to ${OUT_DIR}/<parameter>/<outputfilename>
cd ${WORKFLOW}
python3 sample_images_by_polygons_v3_mt.py ${IN_DIR} ${PROC_DIR} ${WPS_PROPS}
rc=$?; if [[$rc != 0]]; then
 echo "Workflow failed (exit code $rc)"
 exit $rc
fi

chmod -R a+r ${PROC_DIR}/*
cd ${PROC_DIR}

Make a zip file
if [-z "${output_shapefile_name}"]
then
 output_shapefile_name="shape_${TIMESTAMP}.zip"
else
 output_shapefile_name="${output_shapefile_name}_${TIMESTAMP}.zip"
fi
zip -r -fz ${OUT_DIR}/output_shapefile/${output_shapefile_name} *

Figure 21 workflow.sh

 Forestry TEP Service Developer Guide v2021.12

4.3 A service using Python and R

 FROM ubuntu:18.04

LABEL maintainer lauri.seitsonen@vtt.fi

ENV DEBIAN_FRONTEND=noninteractive

Dependencies
RUN apt-get update && apt-get install -y\
 software-properties-common\
 && apt-get clean && rm -rf /var/lib/apt/lists/*

RUN add-apt-repository ppa:ubuntugis/ubuntugis-unstable

RUN apt-get update && apt-get install -y\
 zip\
 curl\
 bc\
 libfreetype6\
 python3\
 python3-dev\
 python3-pip\
 python3-gdal\
 gdal-bin\
 libgdal-dev\
 libgeos++-dev\
 libudunits2-dev\
 libproj-dev\
 libx11-dev\
 libgl1-mesa-dev\
 libglu1-mesa-dev\
 libfreetype6-dev\
 libxt-dev\
 libfftw3-dev\
 software-properties-common\
 && apt-get clean && rm -rf /var/lib/apt/lists/*

Install Python libraries depending on the needs
RUN pip3 install GDAL numpy==1.18.1 pyproj==2.6.1.post1 pandas==1.1.1

Install R
RUN gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
E298A3A825C0D65DFD57CBB651716619E084DAB9 &&\
 gpg -a --export E298A3A825C0D65DFD57CBB651716619E084DAB9 | apt-key add - &&\
 add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu bionic-cran35/' &&\
 apt-get update && apt-get install -y\
 r-base\
 r-base-core\
 r-recommended
Install remotes to enable easy library installation
RUN Rscript -e 'install.packages("remotes")'

 Forestry TEP Service Developer Guide v2021.12

Install required R libraries
RUN Rscript -e 'library(remotes); install_version("raster", version="3.0.12", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("sp", version="1.4.1", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("data.table", version="1.12.8", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("future", version="1.16.0", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("gdalUtils", version="2.0.3.2", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("glue", version="1.3.2", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("lazyeval", version="0.2.2", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("Rcpp", version="1.0.4", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("RCSF", version="1.0.2", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("rgeos", version="0.5.2", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("rgdal", version="1.4.8", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("rgl", version="0.100.50", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("sf", version="0.9.0", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("BH", version="1.72.0.3", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("RcppArmadillo", version="0.9.850.1.0", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("rlas", version="1.3.5", upgrade="never")'
RUN Rscript -e 'library(remotes); install_version("lidR", version="2.2.3", upgrade="never")'

RUN Rscript -e 'install.packages("unix")'

RUN mkdir -p /home/worker/processor

Copy all needed files
COPY *.csv /home/worker/processor/
COPY *.py /home/worker/processor/
COPY *.R /home/worker/processor/
COPY *.sh /home/worker/processor/

Download and install ftep_util wheel to use its Python functions
RUN curl -L https://f-tep.com/sites/default/files/ftep_util-0.0.1-py3-none-any.whl > /home/worker/ftep_util-0.0.1-
py3-none-any.whl
RUN pip3 install /home/worker/ftep_util-0.0.1-py3-none-any.whl

#######################
Configure environment
ENV PATH=/home/worker/processor:${PATH}

ENTRYPOINT ["/home/worker/processor/workflow.sh"]

Figure 22 Dockerfile

 Forestry TEP Service Developer Guide v2021.12

#!/usr/bin/env bash

set -x -e

F-TEP service environment
WORKFLOW=$(dirname $(readlink -f "$0"))
WORKER_DIR="/home/worker"
IN_DIR="${WORKER_DIR}/workDir/inDir"
OUT_DIR="${WORKER_DIR}/workDir/outDir"
WPS_PROPS="${WORKER_DIR}/workDir/FTEP-WPS-INPUT.properties"
PROC_DIR="${WORKER_DIR}/procDir"
TIMESTAMP=$(date --utc +%Y%m%d_%H%M%SZ)

export GDAL_DATA=$(gdal-config --datadir)

Input parameters available as shell variables
source ${WPS_PROPS}

export PYTHONIOENCODING=utf8

Print information useful for debugging
cat ${WPS_PROPS}
python3 --version
pip3 list
printenv
gdal_translate --version
Rscript --version

Service output
mkdir -p ${OUT_DIR}/output

Input files available under ${IN_DIR}
Output files to be written to ${OUT_DIR}/<parameter>/<outputfilename>

cd ${WORKFLOW}

python3 main.py ${IN_DIR} ${PROC_DIR} ${OUT_DIR}/output ${WPS_PROPS}
rc=$?; if [[$rc != 0]]; then
 echo "ERROR: python3 main.py failed (exit code $rc)"
 exit $rc
fi

Figure 23 workflow.sh. Here the handling of parameters is done within the Python script and Rscript is called from Python.

retcode = os.system('Rscript my_script.R')
if retcode != 0:
 print('ERROR: Rscript my_script.R failed (exit code ' + str(retcode) + ')')
 exit(2)

Figure 24 Snippet to call Rscript from Python

 Forestry TEP Service Developer Guide v2021.12

4.4 Python utility library for parameter handling and input file detection

The names for input files that are listed in the service input parameters are not necessarily the names of
the files on the disk. We provide ftep_util library to make parameter and input management in Python
easier. The library can be taken into use with the following snippet in Dockerfile

Download and install ftep_util wheel to use its Python functions
RUN curl -L https://f-tep.com/sites/default/files/ftep_util-0.0.1-py3-none-any.whl > /home/worker/ftep_util-0.0.1-
py3-none-any.whl
RUN pip3 install /home/worker/ftep_util-0.0.1-py3-none-any.whl

Figure 25 Dockerfile snippet to install ftep_util library

Documentation of the library is available at https://f-tep.com/sites/default/files/ftep_util.html. Sample
usage is given below.

 Forestry TEP Service Developer Guide v2021.12

import argparse
import os
import ftep_util as ftep

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='My script')
 parser.add_argument('indir', help='Input data directory')
 parser.add_argument('procdir', help='Processing directory')
 parser.add_argument('outdir', help='Output directory')
 parser.add_argument('input', help='Input parameter file')
 args = parser.parse_args()
 if (not os.path.isdir(args.indir)):
 print('ERROR: Invalid input data directory ' + args.indir)
 exit(1)
 if (not os.path.isdir(args.procdir)):
 print('ERROR: Invalid processing directory ' + args.procdir)
 exit(1)
 if (not os.path.isdir(args.outdir)):
 print('ERROR: Invalid output directory ' + args.procdir)
 exit(1)
 if (not os.path.isfile(args.input)):
 print('ERROR: Invalid input parameter file ' + args.input)
 exit(1)

 # Parameters. The keys are those that have been specified in F-TEP service inputs
 inputDataKey = 'input_data'
 # Used to limit which image files will be included
 inputDataPatternKey = 'input_data_pattern'

windowSizeKey = 'windowsize'
 outputNameKey = 'outputname'
 # Default parameter values
 params = ftep.Params()
 params.setValue(windowSizeKey, 10)
 # Add parameters from file
 params.readFile(args.input)

 # Find input files
 dataDir = os.path.join(args.indir, inputDataKey)
 if (not os.path.isdir(dataDir)):
 print('ERROR: No data directory')
 exit(1)
 files, filteredFiles = ftep.detectFiles(dataDir, supported_extensions=['.las', '.laz'],

 pattern=params.getString(inputDataPatternKey))
 if len(files) == 0:
 print('ERROR: No ALS data detected')
 exit(1)
 if len(filteredFiles) == 0:
 print('ERROR: No ALS data after filtering')
 exit(1)

Figure 26 Sample ftep_util usage

