

Knowledge for Tomorrow

Predicting Forest Height with Self-Supervised Learning: MoCo and MAML

Lloyd Hughes (EPFL) Marc Rußwurm (EPFL) Oleg Antropov (VTT)

Background and Motivation

- Increased demand for timely, accurate, and large-scale forest inventories
 - Climate change
 - Deforestation
 - Urbanization
- Forest height is a key indicator of:
 - forest health
 - productivity
 - above ground biomass
- Traditional methods:
 - Ground plot survey data (Labour intensive)
 - Analysis of airborne laser scanning data (Expensive)
 - Aerial photography and expert analysis (Interpretation bias)

Study site: Southern Finland

- 50 km x 50 km boreal forest in southern Finland
- 897 unique surveyed forest plots
- 15-25m diameter per plot
- Reference heights from airborne LiDAR and ground surveys

Can **unlabelled data** be exploited to enable **locally accurate** predictions of **forest plot height** from a small survey dataset?

Self Supervised Learning

Pretrain Seed 1158 / Spring Seed 1868 / Summe Seed 1970 / Fall Seed 2017 / Winter Background © wikimedia.org

Large-scale Unlabelled Dataset

Task/Location specific dataset

SSL: Pretraining Dataset

Sen12MS Dataset [Schmitt et al. 2019]:

- 180,662 triplets (S1, S2, MODIS IGBP)
- 90/10 train/validation split

SSL: Momentum Contrast (MoCo)

Sentinel 1	Sentinel 2	
Random Cropping (128 x 128px)		
Vertical & Horizontal Flipping (p=0.25)		
Speck Augmentation (p=0.5)	Gaussian Blur (p=0.5)	

- ResNet18 backbone per data modality (S1 and S2)
- Augmentations drive representation learning

We learn transferrable representations of the data

SSL: Model-agnostic Meta-learning (MAML)

- ResNet-12 backbone per modality
- Diverse set of binary 1-v-all tasks drive learning of a meta-model

We learn a model to learn new problems

Dataset Creation

Data split:

- Plot level forest heights partitioned into 6 classes
- 50/50 Stratified split into test/train subsets

Training patches:

- Single Sentinel-2 (L1C)
- Median multi-temporal Sentinel-1 (VV+VH)
- Cropped patches centered on forest plot

EPFL

Sentinel-2

Sentinel-1

MoCo: Fine-Tuning

- Fixed encoder networks, learn regression model
- Fine-tuned using:
 - Sentinel-2 only
 - Sentinel-1 and Sentinel-2 (concatenated representations)
- Two patch sizes:
 - 4x4 pixels
 - 12x12 pixels

MoCo: Fine-Tuning

UC5: MAML fine-tuning

- ResNet-12 task model
- Fine-tune task model using L1 loss
- Sentinel-1 and Sentinel-2 stacked at input
- 24x24 pixel patches

Results

Model	R ²	RMSE (meters)
kNN Baseline	0.44	5.07
MAML (24px)	0.31	5.62
MoCo S1+S2 (4px)	0.53	4.64
MoCo S1+S2 (12px)	0.65	4.01
MoCo S2 only (4px)	0.55	4.53
MoCo S2 only (12px)	0.57	4.4

- MoCo better capture the spectral information
- Sentinel-1 has little impact on regression accuracy
- MoCo S1+S2 with 12x12px patches exploits spatial autocorrelations
- Model is reasonable for interpolation, but is unlikely to be predictive
- Application to other regions and times will require further fine-tuning
- Models can be applied to predicting other forest variables

RepreSent project

Thank you!

