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Multi-source EO data and regression task

Typical plot level-accuracies’
using traditional modelling
approaches (e.g., RF, SVM, MLR)

Datasets

Sentinel-1 only

Sentinel-2 only

Sentinel-2 +
Sentinel-1 or PALSAR2

Sentinel-2 +
Sentinel-1 +
TanDEM-X coherence
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Accuracy*

50-80%

20-60%

20-60%

20-40%

Considerations

* Time series required
+ Limited accuracy
* All weather capability

* Required for species
- Best single dataset
» Inter-image variation

* Minor improvement to
Sentinel-2 alone

+ Great improvement for
Height and GSV
+ Limited availability

Forest Carbon

@esa Monitoring

Deep learning
models

— 25-35%

— 20-30%
— 20-25%

- 17-19%

» Capable of automatically extracting spatial
textural and temporal dependencies vs "hand-
engineered features”

= Require high quality and extensive reference
data labels, that is fully segmented labels

» Already quite popular in semantic
segmentation tasks with EO data, such as land
cover mapping

= Semi-supervised learning and weakly
supervised learning scenarios are suitable

Antropov et al. “Intercomparison of EO data and methods for forest mapping in the
context of forest carbon monitoring”, IGARSS 2022

Ge et al. Improved semisupervised unet deep learning model for forest height
mapping with satellite sar and optical data, IEEE JSTARS, 2022

Ge et al. Improved LSTM model for boreal Forest Height Mapping Using Sentinel-1
Time Series, Remote Sensing, 2022




How to train DL models using small amount of
reference data?

UNet model as an good example
» Popular deep learning model in computer vision
= Accurate, efficient, flexible with reduced data requirements
= Well suitable for satellite image analysis thanks to symmetric structure

» Good performance in prior exercises with fully segmented labels for semantic
segmentation and regression tasks

Ways to use “weak” reference data
» Use model pretraining over areas where fully segmented labels are available to
develop a forest-specific model
» Perform model transfer for fine-tuning using a small set of reference labels in the
target site
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Prior experience in DL semantic segmentation
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Takeaway: general
purpose pretrained
models can be
effectively fine-
tuned with transfer
learning techniques
for mapping with
SAR data

Architecture Base model Parameters
BiSeNet ResNet101 24.75M
SegNet VGGI6 34.97™M
Mobile U-Net  Not applicable  8.87TM
DeeplabVi+  ResNetl0]1 47.96M
FRRN-B ResNetl01 24.75M
PSPNet ResNet101 56M
FC-DenseNet ResNet101 9.27TM

Séepanovi¢, Antropov, et al. Wide-area land cover mapping with Sentinel-1 imagery using deep learning semantic
segmentation models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021.



UNet based models
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*Ge, Gu, Su, Praks, Antropov, Improved semi-supervised UNet deep learning model for forest height mapping with satellite
SAR and optical data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.



UNet based models
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Key points:

Target variable — forest tree
height, reference data — airborne
laser measurements, predictor
variables — features from several
sets of satellite EO datasets
(radar channels, optical bands)

Comparison with popular
machine learning approaches:
MLR, SVR, random forests

Testing separately Sentinel-1
images (frozen/nonfrozen),
Sentinel-1 time series (27
datatakes), “good” Sentinel-2
image

Ge, Gu, Su, Praks, Antropov, Improved semi-supervised UNet deep learning model for forest height mapping with satellite

tep ESA RepreSe nt SAR and optical data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.



Results using fully segmented data
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Forest height prediction performance for various EO datasets and prediction methods. (Ge et al. 2022)

I

>

T

IR

11111 i ieees

EITEIIEE

“jEEbEREE

¥ 8

Ge, Gu, Su, Praks, Antropov, Improved semi-supervised UNet deep learning model for forest height mapping with satellite
tep ESA RepreSe nt SAR and optical data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.



DL model transfer e
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DL model transfer
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*Ge, Antropov, Hame, Miettinen et al. Deep learning models with transfer learning in boreal
forest mapping using multi-source satellite SAR/INSAR and optical images, submitted, 2023.



Conclusions

Forest specific model pretraining works well

Prediction accuracies are only slightly worse
compared to model trained using fully-segmented
labels

Prediction accuracy considerably better compared
to classical methodologies, including KNN, random
forests, SVR.

Method is “robust” in no-data or scarce data
scenario (e.g., when number of plots is reduced to
dozens instead of hundreds, or certain
heigh/biomass classes are underrepresented

or completely missing)

The approach is applicable to other forest variables
(e.g., growing stock volume or forest biomass)

Several pretrained models are available via F-TEP

W) forestry Eesa

ESA RepreSent

©OVTT, 2023



T
oF L~

2y

¢ fo '
- A
-

Thank




