



## Deep Change Vector Analysis (DCVA) Approaches for Forest Change Detection using Copernicus Sentinel Images

Ridvan Salih Kuzu (DLR) Oleg Antropov (VTT) Sudipan Saha (TUM)





### **Background and Motivation**

#### Importance of automated forest change detection:

- Forests are subject to natural disturbances such as windstorms and snow load that can cause severe damage.
- Accurate and timely detection of forest change caused by natural hazards is crucial for effective management and conservation efforts.

#### Prompt mitigation of forest hazards is crucial for:

- Forest health
- Ecosystem balance
- Biodiversity
- Habitat quality

#### Advantages of unsupervised learning for forest change detection:

- Capability to analyze large amounts of data quickly and efficiently
- Minimization of manual labor and time required for training data preparation
- Identifying potentially concerning areas for closer examination











## **Conceptual Idea of Deep Change Vector Analysis**













### **Studied Forest Change Use-Cases**

#### Boreal forest snow damage using Sentinel-1 images

- Severe snow-load damage took place in North-Eastern Finland during winter 2017-2018 season. The damages were fairly well documented.
- EO dataset is represented by time series of Sentinel-1 images taken between November 2017 and March 2018.
- Detecting damage caused by snow can be a challenging use case, as there may be other observable changes that take place in the same region during the same time period
- Reference data included forest mask and ground reference indicating logging reports after snow-load damage, as well as sample of intact forest stands.

#### Windstorm damage in boreal forest

- A severe windstorm occurred on June 22, 2021, over Northern Finland, lead to extensive forest damages.
- The EO dataset includes one Sentinel-2 image taken before and one taken shortly after the event, enabling Sentinel-2 change detection to be performed. Additionally, several Sentinel-1 images taken both before and after the windstorm event are provided for analysis.
- Reference data included forest mask and ground reference indicating logging reports after snow-load damage, as well as sample of intact forest stands.









While continuous monitoring is necessary for assessing snow damage, DCVA can only be applied to two images - the before and after event images. As a result, deep change vectors are generated using these two images.



65.4°N

65.1°N



30°E



#### **Snow-load forest damage**



Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:



Our experimental results showed that the best performing deep change features come from the 3<sup>rd</sup> layer of the model.







### **Snow-load forest damage**



Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:



- Data: 2-channel Sentinel-1 imagery (VV-VH)
- Pre-processing: image normalization, cropping saturated values.
- Deep feature extraction: 3<sup>rd</sup> layer of the model with BigEarthNet for weights.
- *Post-processing:* eliminating small objects using morphological operations





DLR



#### Windstorm forest damage







### Windstorm forest damage



Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:



Our experimental results showed that deep change features coming from the low layers of the model perform better for windstorm detection.





### Windstorm forest damage







- Data: 4-channel Sentinel-2 imagery
- Pre-processing: image normalization, cropping saturated values.
- Deep feature extraction: 1<sup>st</sup> layer of the model with BigEarthNet for weights.
- *Post-processing:* eliminating small objects using morphological operations





### Conclusions

#### Snow damage

- Competitive results for unsupervised bitemporal change detection, comparable to supervised methodologies
- Ways to adapt the methodology to image time series need further exploration.

#### Windstorm damage

- DCVA was successful in detecting change areas, it is expected that specificity can be further improved. Performance of DCVA is **dependent on the capabilities of feature extractor**.
- Further, potential of **forest-specific feature extractor can be examined to improve** the retrieved features and thus prediction performance.











RepreSent project



# Thank you!



