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Background and Motivation
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• Forests are subject to natural disturbances such as windstorms and snow load that can 
cause severe damage.

• Accurate and timely detection of forest change caused by natural hazards is crucial for 
effective management and conservation efforts.

Importance of automated forest change detection:

• Forest health
• Ecosystem balance
• Biodiversity
• Habitat quality

Prompt mitigation of forest hazards is crucial for:

• Capability to analyze large amounts of data quickly and efficiently
• Minimization of manual labor and time required for training data preparation
• Identifying potentially concerning areas for closer examination

Advantages of unsupervised learning for forest change detection: 



Conceptual Idea of Deep Change Vector Analysis
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Given co-registered pre-change and post-change images 𝐼ଵ 
and 𝐼ଶ that represent a scene consisting of a set of pixels Ω, 
the goal of DCVA is to group the Ω into two Ω𝒄 (set of 
changed pixels) and Ω𝒏𝒄 (set of unchanged pixels)

Changed pixels are expected to show higher 
magnitude of 𝐺 (change vector) while the unchanged 
pixels are expected to show lower magnitudes. 

Following this, a threshold on the magnitude to group 
pixels into changed (Ω)  and unchanged (Ω) classes

Optionally, changed pixels can be further sub-grouped using 
any clustering method.



Deep change vector analysis with Resnet-18
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Resnet-18

Deep change vector (G) generation

Deep features can be extracted from almost  any convolutional 
layer of CNNs for detecting forest change with DCVA

Our approach extracted features from ResNet-18's first, second, 
third, or fourth layer

Aggregating deep change vectors generated from different layers 
can also improve accuracy and robustness of the approach



Studied Forest Change Use-Cases
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• Severe snow-load damage took place in North-Eastern Finland during winter 2017-2018 
season. The damages were fairly well documented.

• EO dataset is represented by time series of Sentinel-1 images taken between November 
2017 and March 2018. 

• Detecting damage caused by snow can be a challenging use case, as there may be other 
observable changes that take place in the same region during the same time period

• Reference data included forest mask and ground reference indicating logging reports 
after snow-load damage, as well as sample of intact forest stands. 

Boreal forest snow damage using Sentinel-1 images

• A severe windstorm occurred on June 22, 2021, over Northern Finland, lead to extensive 
forest damages. 

• The EO dataset includes one Sentinel-2 image taken before and one taken shortly after 
the event, enabling Sentinel-2 change detection to be performed. Additionally, several 
Sentinel-1 images taken both before and after the windstorm event are provided for 
analysis.

• Reference data included forest mask and ground reference indicating logging reports 
after snow-load damage, as well as sample of intact forest stands. 

Windstorm damage in boreal forest 



Snow-load forest damage
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While continuous monitoring is necessary for
assessing snow damage, DCVA can only be
applied to two images - the before and after
event images. As a result, deep change vectors
are generated using these two images.

before the event after the event ground reference 
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Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:

Our experimental results showed that the best performing deep change 
features come from the 3rd layer of the model.

Snow-load forest damage
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Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:

• Data: 2-channel Sentinel-1 imagery (VV-VH)
• Pre-processing: image normalization, cropping saturated values.
• Deep feature extraction: 3rd layer of the model with BigEarthNet for weights.
• Post-processing: eliminating small objects using morphological operations

Snow-load forest damage
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before the event

after the eventground reference

Windstorm forest damage
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Prediction results when the pretrained Resnet-18 has been utilized as feature extractor:

Our experimental results showed that deep change features coming from the 
low layers of the model perform better for windstorm detection. 

Windstorm forest damage



Windstorm forest damage
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Method Sensitivity Specificity Accuracy
DCVA – Sentinel 2 52.22 86.22 85.19

Image
Reference 

Image

Result
DCVA 
Result

• Data: 4-channel Sentinel-2 imagery
• Pre-processing: image normalization, cropping saturated values.
• Deep feature extraction: 1st layer of the model with BigEarthNet for weights.
• Post-processing: eliminating small objects using morphological operations



Conclusions
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• Competitive results for unsupervised bitemporal change 
detection, comparable to supervised methodologies

• Ways to adapt the methodology to image time series need
further exploration.

Snow damage

• DCVA was successful in detecting change areas, it is expected 
that specificity can be further improved. Performance of 
DCVA is dependent on the capabilities of feature extractor. 

• Further, potential of forest-specific feature extractor can be 
examined to improve the retrieved features and thus 
prediction performance. 

Windstorm damage
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